

Status of China National SFR Program

ZHANG Donghui
China Institute of Atomic Energy

International Workshop on Prevention and Mitigation of Severe Accidents in Sodium-cooled fast Reactors

12th-13th June, 2012 in Tsuruga, JAPAN

Current Status of Nuclear Energy in China

Influence of Fukushima Accident

March 11, the great east Japan earthquake attacked Fukushima NPP. Unite 1-4 had been severely damaged.

March 16, The China Government decided that:

- 1. Organize a comprehensive safety inspection of nuclear facilities immediately;
- 2. Strengthen management of the security of existing nuclear facilities;
- Conduct a thorough review of NPPs under construction with the most advanced standards;
- 4. Prepare the nuclear security plan immediately and suspend approvals of all of the new NPP projects.

Latest attitude of China government

- Nuclear energy still be one of the most important selection.
- New technologies with more safety features are encouraged.
- The Atomic Energy Law is in draft.
- The nuclear security plan has been completed.
- The nuclear security inspection finished.

History of SFR technology of China

R&D Program (1986)

1. CEFR (2010)

2. CDFR (~2020)

3. CCFR (~2030)

- 1. 1986, fast technology R&D Project was listed in national program on High-technology development (863 project) by Ministry of Science and Technology (MoST)
- 2. 1996, CEFR project was approved and in construction by Ministry of Science and Technology(MoST) and CAEA
- 3. 2006, fast reactor technology was listed in China National middle-long term science and technology development program(2006~2020) by Ministry of Science and Technology(MoST)

Main works of basic research

- The research mainly focused on:
 - Reactor scheme selection
 - Neutron physics
 - Thermal Hydraulic and safety
 - Fuel
 - Sub-assembly related technical
 - Sodium technology
 - Structure and material
 - Sodium-water reaction and detection
 - Important safety related components

Dongfeng-VI, Jul.1970

Project Plan

<u>1998.10</u>

First Physical critical

2010.7.21

Commissioning of Phase A ended

Main milestones of CEFR

Reactor block installation finished Main building finished FCD 2008.12 Preparation of Site 2002.8 2000.5

Connect to Grid

2009.8

2011.7.21

China National medium- and long-term program for science and technology development (2006~2020)

- The program emphasized that the features of future energy should be cheap, efficiently and clean.
- The Gen-IV nuclear power system, advanced fuel cycle system and fusion technology should be paid more attention.
- The aim of fast reactor technology is to complete the project of CEFR and master the design, fuel and material technologies.

Commissioning phases

Commissioning schedule

Phase A (cold and hot status tests): 2005-2009.9.30

Phase B (physical startup): 2010.6.5-2010.12.31

Phase C (power startup): 2011.1.1-2011.7.21

Fuel loading

Radiation detection system test

Control room test

Sodium system test

Physical startup preparation

Hot cell test

Main test programs in the CEFR Physical startup(Phase B)

1.Fuel Loading and Criticality

- 1.1 Fuel Loading and Minimum Mass Criticality
- 1.2 250°C critical test in the operational loading
- 1.3 300°C critical test in the operational loading
 - 1.4 Doppler point measurement

2.Control Rod Worth Measurement

- 2.1 Control rod worth preliminary measurement(minimum loading)
- 22 250°C control rod worth measurement in the operational loading
- 2.3 300°C Control Rod Worth Measurement in the operational loading

3. Reactivity Measurement

- 3.1 Coolant Flow reactivity
- 3.2 Reactor Pressure reactivity
- 3.3 Sodium void reactivity Worth
- 3.4 Displace fuel subassembly reactivity
 - 3.5 temperature Reactivity Effect

4. Foil Irradiation

- 4.1 Nuclear reaction rate distribution measurement
- 4.2 Cross section ratio measurement
- 4.3 Neutron spectrum measurement
- 4.4 Absolutely nuclear power measurement

Test programs Schedule in the CEFR Physical start-up

Nuclear power graph

SFR Program on going and next proposal

CFR-1000

- 2500MWth, ~1000MWe
- MOX fuel
- BR ≥ 1.2
- Sodium as coolant
- Na-Na-H₂O loops with 3 circuits of primary and secondary loop
- One turbine
- Negative feedback
- Confinement
- CDF<10⁻⁶
- Life>40y

CFR-1000 diagram

Site of CFR-1000 (Fujian province of China)

Spent fuel Reprocessing

- The pilot reprocessing plant with a capacity of 50tHM/a completed successfully the hot test in December 2010.
- An industry scale reprocessing plant with a capacity of about 200tHM/a will be built before 2020.

Repossessing experimental facility project

- The facility is under testing now.
- It will be put into operation this year.

MOX fuel

- A pilot MOX fuel fabrication line (with a capacity of 500kg/a) is under construction.
- Several research projects about pellet, clad, rod and subassembly were approved.
- The testing rods will be put into CEFR for irradiation before 2017.

Irradiation facility - CEFR

- Samples can be put into container
- Test fuel pin could be loaded into test subassembly
- There are two testing holes in the rotating plug.

Irradiation facility - CARR

Power: 60MW

Max. neutron flux: 10¹⁴

Thanks for your attention!